Back to Search Start Over

CO concentration measurements using tunable diode laser absorption spectroscopy behind the shock waves in Martian atmosphere

Authors :
Fei Li
Lin Xin
Xilong Yu
Dachuan Li
Source :
Fifth International Symposium on Laser Interaction with Matter.
Publication Year :
2019
Publisher :
SPIE, 2019.

Abstract

Shock tube experiments are carried out to study the physical and chemical processes during a vehicle entry into the Mars atmosphere using tunable diode laser absorption spectroscopy (TDLAS) and optical emission spectroscopy (OES). CO concentration distributions are diagnosed behind a shock wave in a CO2-N2 mixture with three different conditions of initial pressure and velocity. The strong shock wave is established in a shock tube driven by combustion of hydrogen and oxygen. Time-resolved spectra of the Δv = 0 sequence of the B2Σ+ →X2Σ+ electronic transition of CN have been observed through OES. A precise analysis of the CN violet spectra is performed and used to determine rotational and vibrational temperatures. Two absorption lines in the first overtone band of CO near 2.33 μm, are selected from a HITRAN simulation to calibrate laser wavelength and detect the CO concentration. Combined with these temperature results using OES, CO concentrations in the thermal equilibrium region are derived, which are 2.91 × 1017 cm-3, 7.46 × 1017 cm-3 and 1.01 × 1018 cm-3, corresponding to equilibrium temperatures equal to 7000 ± 400 K, 7400 ± 300 K, 6000 ± 300 K in the low, medium and high pressure conditions, respectively.

Details

Database :
OpenAIRE
Journal :
Fifth International Symposium on Laser Interaction with Matter
Accession number :
edsair.doi...........3ced41e6bac4c4314b570c3025217862