Back to Search
Start Over
Theory-based approaches and microstructural analysis to evaluate the service life-retention of stressed carbon fiber composite strands for concrete bridge applications
- Source :
- Composites Part B: Engineering. 165:279-292
- Publication Year :
- 2019
- Publisher :
- Elsevier BV, 2019.
-
Abstract
- Prestressed concrete girders and piles with steel strands are used in construction of bridges in North America, due to their economy of design, fabrication, and installation. However, they are often exposed to harsh environments, which results in rapid degradation. Therefore, carbon fiber reinforced polymer (CFRP) tendons have successfully been introduced as prestressing reinforcement for pile applications. This paper presents a study on the physical characterization, microstructural analysis, and durability performance of unstressed and stressed carbon-fiber composite cables (CFCCs) for prestressing applications. This is achieved through testing 120 CFCC specimens, subjected to stress levels of about 40% and 65% of their guaranteed strength, and 51 specimens without sustained load under tension. Moreover, prediction models were introduced to assess the long-term performance and retentions of CFCC strands. The models included Arrhenius model, Fick's law, Fib Bulletin (40) model, and a developed approach that incorporates the effects of temperature, design life, and relative humidity of exposure into the environmental reduction factor. Based on the predication model, the tensile strength retention (CE) for CFCC strands, is predicted to retain over 0.95 and 0.84 of ultimate tensile strength for a relative humidity (RH)
- Subjects :
- Carbon fiber reinforced polymer
Materials science
Tension (physics)
Mechanical Engineering
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Durability
Industrial and Manufacturing Engineering
0104 chemical sciences
law.invention
Prestressed concrete
Mechanics of Materials
law
Girder
Service life
Ultimate tensile strength
Ceramics and Composites
Composite material
0210 nano-technology
Pile
Subjects
Details
- ISSN :
- 13598368
- Volume :
- 165
- Database :
- OpenAIRE
- Journal :
- Composites Part B: Engineering
- Accession number :
- edsair.doi...........3ceb24626ee211527199cdcfcbb2eacd