Back to Search Start Over

Learning Markov Logic Networks via Functional Gradient Boosting

Authors :
Tushar Khot
Kristian Kersting
Sriraam Natarajan
Jude W. Shavlik
Source :
ICDM
Publication Year :
2011
Publisher :
IEEE, 2011.

Abstract

Recent years have seen a surge of interest in Statistical Relational Learning (SRL) models that combine logic with probabilities. One prominent example is Markov Logic Networks (MLNs). While MLNs are indeed highly expressive, this expressiveness comes at a cost. Learning MLNs is a hard problem and therefore has attracted much interest in the SRL community. Current methods for learning MLNs follow a two-step approach: first, perform a search through the space of possible clauses and then learn appropriate weights for these clauses. We propose to take a different approach, namely to learn both the weights and the structure of the MLN simultaneously. Our approach is based on functional gradient boosting where the problem of learning MLNs is turned into a series of relational functional approximation problems. We use two kinds of representations for the gradients: clause-based and tree-based. Our experimental evaluation on several benchmark data sets demonstrates that our new approach can learn MLNs as good or better than those found with state-of-the-art methods, but often in a fraction of the time.

Details

Database :
OpenAIRE
Journal :
2011 IEEE 11th International Conference on Data Mining
Accession number :
edsair.doi...........3cd13a2f5e4582eb5d78c527bf9edb09