Back to Search
Start Over
Local ill-posedness of the incompressible Euler equations in $$C^1$$ C 1 and $$B^1_{\infty ,1}$$ B ∞ , 1 1
- Source :
- Mathematische Annalen. 364:243-268
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- We show that the 2D Euler equations are not locally well-posed in the sense of Hadamard in the \(C^1\) space and in the Besov space \(B^1_{\infty ,1}\). Our approach relies on the technique of Lagrangian deformations of Bourgain and Li (Strong ill-posedness of the incompressible Euler equations in borderline Sobolev spaces. arXiv:1307.7090). We show that the assumption that the data-to-solution map is continuous in either \(C^1\) or \(B^1_{\infty ,1}\) leads to a contradiction with a result in \(W^{1,p}\) of Kato and Ponce (Rev Mat Iberoam 2:73–88, 1986).
- Subjects :
- Pure mathematics
General Mathematics
010102 general mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
Space (mathematics)
01 natural sciences
Euler equations
010101 applied mathematics
Sobolev space
symbols.namesake
Hadamard transform
symbols
Besov space
Incompressible euler equations
0101 mathematics
Ill posedness
Lagrangian
Mathematics
Subjects
Details
- ISSN :
- 14321807 and 00255831
- Volume :
- 364
- Database :
- OpenAIRE
- Journal :
- Mathematische Annalen
- Accession number :
- edsair.doi...........3c665d040a49265d50e754505cd7d3f6
- Full Text :
- https://doi.org/10.1007/s00208-015-1213-0