Back to Search
Start Over
LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics
- Source :
- High Energy Density Physics. 17:2-11
- Publication Year :
- 2015
- Publisher :
- Elsevier BV, 2015.
-
Abstract
- The advent of high-power lasers facilities such as the National Ignition Facility (NIF), and Laser Megajoule (LMJ) in the near future opens a new era in the field of High Energy Density Laboratory Astrophysics. The LMJ, keystone of the French Simulation Program, is under construction at CEA/CESTA and will deliver 1.5 MJ with 176 beamlines. The first physics experiments on LMJ will be performed at the end of 2014 with 2 quadruplets (8 beams). The operational capabilities (number of beams and plasma diagnostics) will increase gradually during the following years. We describe the current status of the LMJ facility and the first set of diagnostics to be used during the commissioning phase and the first experiments. The PETAL project (PETawatt Aquitaine Laser), part of the CEA opening policy, consists in the addition of one short-pulse (500 fs to 10 ps) ultra-high-power, high-energy beam (a few kJ compressed energy) to the LMJ facility. PETAL is focalized into the LMJ target chamber and could be used alone or in combination with LMJ beams. In the later case, PETAL will offer a combination of a very high intensity multi-petawatt beam, synchronized with the nanosecond beams of the LMJ. PETAL, which is devoted to the academic research, will also extend the LMJ diagnostic capabilities. Specific diagnostics adapted to PETAL capacities are being fabricated in order to characterize particles and radiation yields that can be created by PETAL. A first set of diagnostics will measure the particles (protons/ions/electrons) spectrum (0.1–200 MeV range) and will also provide point projection proton-radiography capability. LMJ/PETAL, like previously the LIL laser [X. Julien et al., Proc. SPIE 7916 (2011) 791610], will be open to the academic community. Laboratory astrophysics experiments have already been performed on the LIL facility, as for example radiative shock experiments and planetary interiors equation of state measurements.
Details
- ISSN :
- 15741818
- Volume :
- 17
- Database :
- OpenAIRE
- Journal :
- High Energy Density Physics
- Accession number :
- edsair.doi...........3c04de45bb317509a8b970e35b57eb16
- Full Text :
- https://doi.org/10.1016/j.hedp.2014.11.009