Back to Search Start Over

Voxel sensitivity function description of flow-induced signal loss in MR imaging: Implications for black-blood MR angiography with turbo spin-echo sequences

Authors :
Elias R. Melhem
E.K. Yucel
Hernan Jara
Beverly C. Yu
Shelton D. Caruthers
Source :
Magnetic Resonance in Medicine. 41:575-590
Publication Year :
1999
Publisher :
Wiley, 1999.

Abstract

The conditions in which the image intensity of vessels transporting laminar flow is attenuated in black-blood MR angiography (BB-MRA) with turbo spin-echo (TSE) and conventional spin-echo (CSE) pulse sequences are investigated experimentally with a flow phantom, studied theoretically by means of a Bloch equation-voxel sensitivity function (VSF) formalism, and computer modeled. The experiments studied the effects of: a) flow velocity, b) imaging axes orientation relative to the flow direction, and c) phase encoding order of the TSE train. The formulated Bloch equation-VSF theory describes flow effects in two-dimensional (2D)- and 3D-Fourier transform magnetic resonance imaging. In this theoretical framework, the main attenuation mechanism instrumental to BB-MRA, i.e., transverse magnetization dephasing caused by flow in the presence of the imaging gradients, is described in terms of flow-induced distortions of the individual voxel sensitivity functions. The computer simulations predict that the intraluminal homogeneity and extent of flow-induced image intensity attenuation increase as a function of decreasing vessel diameter, in support of the superior image quality achieved with TSE-based BB-MRA in the brain.

Details

ISSN :
15222594 and 07403194
Volume :
41
Database :
OpenAIRE
Journal :
Magnetic Resonance in Medicine
Accession number :
edsair.doi...........3ba3e8d4df1ad59d3d80ddd0709e80ad
Full Text :
https://doi.org/10.1002/(sici)1522-2594(199903)41:3<575::aid-mrm22>3.0.co;2-w