Back to Search
Start Over
Probabilistic Approach to Fractional Integrals and the Hardy-Littlewood-Sobolev Inequality
- Source :
- Springer Proceedings in Mathematics & Statistics ISBN: 9783319121475
- Publication Year :
- 2014
- Publisher :
- Springer International Publishing, 2014.
-
Abstract
- We give a short summary of some of Varopoulos’ Hardy-Littlewood-Sobolev inequalities for self-adjoint \(C_{0}\) semigroups and give a new probabilistic representation of the classical fractional integral operators on \(\mathbb {R}^n\) as projections of martingale transforms. Using this formula we derive a new proof of the classical Hardy-Littlewood-Sobolev inequality based on Burkholder-Gundy and Doob’s inequalities for martingales.
- Subjects :
- Discrete mathematics
Mathematics::Functional Analysis
Mathematics::Operator Algebras
010102 general mathematics
Mathematics::Classical Analysis and ODEs
Probabilistic logic
01 natural sciences
Sobolev inequality
Doob's martingale inequality
010104 statistics & probability
Mathematics::Probability
Azuma's inequality
0101 mathematics
Martingale (probability theory)
Brownian motion
Heat kernel
Mathematics
Subjects
Details
- ISBN :
- 978-3-319-12147-5
- ISBNs :
- 9783319121475
- Database :
- OpenAIRE
- Journal :
- Springer Proceedings in Mathematics & Statistics ISBN: 9783319121475
- Accession number :
- edsair.doi...........3b6f2b68f6feb3e30ca4cbdfea18ddce
- Full Text :
- https://doi.org/10.1007/978-3-319-12148-2_2