Back to Search Start Over

Wavelet enabled convolutional autoencoder based deep neural network for hyperspectral image denoising

Authors :
Dibyendu Dutta
Nabendu Chaki
Ahana Kundu
Chandra Shekhar Jha
Arati Paul
Source :
Multimedia Tools and Applications. 81:2529-2555
Publication Year :
2021
Publisher :
Springer Science and Business Media LLC, 2021.

Abstract

Denoising of hyperspectral images (HSIs) is an important preprocessing step to enhance the performance of its analysis and interpretation. In reality, a remotely sensed HSI experiences disturbance from different sources and therefore gets affected by multiple noise types. However, most of the existing denoising methods concentrates in removal of a single noise type ignoring their mixed effect. Therefore, a method developed for a particular noise type doesn’t perform satisfactorily for other noise types. To address this limitation, a denoising method is proposed here, that effectively removes multiple frequently encountered noise patterns from HSI including their combinations. The proposed dual branch deep neural network based architecture works on wavelet transformed bands. The first branch of the network uses deep convolutional skip connected layers with residual learning for extracting local and global noise features. The second branch includes layered autoencoder together with subpixel upsampling that performs repeated convolution in each layer to extract prominent noise features from the image. Two hyperspectral datasets are used in the experiment to evaluate the performance of the proposed method for denoising of Gaussian, stripe and mixed noises. Experimental results demonstrate the superior performance of the proposed network compared to other state-of-the-art denoising methods with PSNR 36.74, SSIM 0.97 and overall accuracy 94.03 %.

Details

ISSN :
15737721 and 13807501
Volume :
81
Database :
OpenAIRE
Journal :
Multimedia Tools and Applications
Accession number :
edsair.doi...........3a8a370761f8b005e78e9edcf074ecde