Back to Search Start Over

Preparation and characterization of Ni(111)/graphene/Y2O3(111) heterostructures

Authors :
Matthias Batzill
Horacio Coy-Diaz
James Lallo
Rafik Addou
Arjun Dahal
Eli Sutter
Source :
Journal of Applied Physics. 113:194305
Publication Year :
2013
Publisher :
AIP Publishing, 2013.

Abstract

Integration of graphene with other materials by direct growth, i.e., not using mechanical transfer procedures, is investigated on the example of metal/graphene/dielectric heterostructures. Such structures may become useful in spintronics applications using graphene as a spin-filter. Here, we systematically discuss the optimization of synthesis procedures for every layer of the heterostructure and characterize the material by imaging and diffraction methods. 300 nm thick contiguous (111) Ni-films are grown by physical vapor deposition on YSZ(111) or Al2O3(0001) substrates. Subsequently, chemical vapor deposition growth of graphene in ultra-high vacuum (UHV) is compared to tube-furnace synthesis. Only under UHV conditions, monolayer graphene in registry with Ni(111) has been obtained. In the tube furnace, mono- and bilayer graphene is obtained at growth temperatures of ∼800 °C, while at 900 °C, non-uniform thick graphene multilayers are formed. Y2O3 films grown by reactive molecular beam epitaxy in UHV covers the graphene/Ni(111) surface uniformly. Annealing to 500 °C results in crystallization of the yttria with a (111) surface orientation.

Details

ISSN :
10897550 and 00218979
Volume :
113
Database :
OpenAIRE
Journal :
Journal of Applied Physics
Accession number :
edsair.doi...........3a8347982ccd03cf2d933bb17669d155