Back to Search Start Over

ON -GROUPS WITH AUTOMORPHISM GROUPS RELATED TO THE CHEVALLEY GROUP

Authors :
Saul D. Freedman
John Bamberg
Luke Morgan
Source :
Journal of the Australian Mathematical Society. 108:321-331
Publication Year :
2020
Publisher :
Cambridge University Press (CUP), 2020.

Abstract

Let $p$ be an odd prime. We construct a $p$-group $P$ of nilpotency class two, rank seven and exponent $p$, such that $\text{Aut}(P)$ induces $N_{\text{GL}(7,p)}(G_{2}(p))=Z(\text{GL}(7,p))G_{2}(p)$ on the Frattini quotient $P/\unicode[STIX]{x1D6F7}(P)$. The constructed group $P$ is the smallest $p$-group with these properties, having order $p^{14}$, and when $p=3$ our construction gives two nonisomorphic $p$-groups. To show that $P$ satisfies the specified properties, we study the action of $G_{2}(q)$ on the octonion algebra over $\mathbb{F}_{q}$, for each power $q$ of $p$, and explore the reducibility of the exterior square of each irreducible seven-dimensional $\mathbb{F}_{q}[G_{2}(q)]$-module.

Details

ISSN :
14468107 and 14467887
Volume :
108
Database :
OpenAIRE
Journal :
Journal of the Australian Mathematical Society
Accession number :
edsair.doi...........3a61267e0797b1f85d2c6d44678407c6
Full Text :
https://doi.org/10.1017/s1446788719000466