Cite
Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds
MLA
Malavika Nair, et al. “Feature Importance in Multi-Dimensional Tissue-Engineering Datasets: Random Forest Assisted Optimization of Experimental Variables for Collagen Scaffolds.” Applied Physics Reviews, vol. 8, Dec. 2021, p. 041403. EBSCOhost, widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi...........395ed0ecd572c7b36b0db63a5969913d&authtype=sso&custid=ns315887.
APA
Malavika Nair, Ruth E. Cameron, Ioana Bica, & Serena M. Best. (2021). Feature importance in multi-dimensional tissue-engineering datasets: Random forest assisted optimization of experimental variables for collagen scaffolds. Applied Physics Reviews, 8, 041403.
Chicago
Malavika Nair, Ruth E. Cameron, Ioana Bica, and Serena M. Best. 2021. “Feature Importance in Multi-Dimensional Tissue-Engineering Datasets: Random Forest Assisted Optimization of Experimental Variables for Collagen Scaffolds.” Applied Physics Reviews 8 (December): 041403. http://widgets.ebscohost.com/prod/customlink/proxify/proxify.php?count=1&encode=0&proxy=&find_1=&replace_1=&target=https://search.ebscohost.com/login.aspx?direct=true&site=eds-live&scope=site&db=edsair&AN=edsair.doi...........395ed0ecd572c7b36b0db63a5969913d&authtype=sso&custid=ns315887.