Back to Search
Start Over
Magnetic Measurements on the Prototype Magnets of the High-Order Correctors for HL-LHC
- Source :
- IEEE Transactions on Applied Superconductivity. 29:1-5
- Publication Year :
- 2019
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2019.
-
Abstract
- The National Institute for Nuclear Physics (INFN) is developing, at the Laboratory of Accelerators and Applied Superconductivity (LASA Milan, Italy), five families of corrector magnets, from skew quadrupole up to dodecapole order, which will be installed in the interaction regions of the High-Luminosity Large Hadron Collider (LHC). These magnets are based on a superferric design, which allows a relatively simple, compact and easy-to-construct magnets. This activity takes place within the framework of a collaboration agreement between CERN and INFN. The magnets have been designed and prototype units have been built and tested for the sextupole, octupole, and decapole orders. Magnetic measurements have been performed in order to characterize the field quality, and to validate the design and construction. This paper presents the instruments and the approach for the magnetic measurements on the prototype magnets. Moreover, the results of measurements at cryogenic temperature, up to the nominal field level, are reported. The magnetic field quality, in terms of transfer function and field multipoles, is analysed as function of the excitation level. The iron saturation effects, which are a major concern of the selected design, are compared with the 3-D magnetic calculations and discussed in view of the construction of the series magnets to be integrated in the corrector package assembly.
- Subjects :
- Superconductivity
Physics
Large Hadron Collider
Field (physics)
Skew
Condensed Matter Physics
01 natural sciences
Electronic, Optical and Magnetic Materials
Magnetic field
Nuclear physics
Magnet
0103 physical sciences
Quadrupole
Physics::Accelerator Physics
Electrical and Electronic Engineering
010306 general physics
Excitation
Subjects
Details
- ISSN :
- 23787074 and 10518223
- Volume :
- 29
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Applied Superconductivity
- Accession number :
- edsair.doi...........3931bc564b5316b46bb73037a06bc84b