Back to Search Start Over

Integrated multimodal cell atlas of Alzheimer’s disease

Authors :
Mariano I. Gabitto
Kyle J. Travaglini
Victoria M. Rachleff
Eitan S. Kaplan
Brian Long
Jeanelle Ariza
Yi Ding
Joseph T. Mahoney
Nick Dee
Jeff Goldy
Erica J. Melief
Krissy Brouner
Jazmin Campos
John Campos
Ambrose J. Carr
Tamara Casper
Rushil Chakrabarty
Michael Clark
Jonah Cool
Nasmil J. Valera Cuevas
Rachel Dalley
Martin Darvas
Song-Lin Ding
Tim Dolbeare
Christine L. Mac Donald
Tom Egdorf
Luke Esposito
Rebecca Ferrer
Rohan Gala
Amanda Gary
Jessica Gloe
Nathan Guilford
Junitta Guzman
Daniel Hirschstein
Windy Ho
Tim Jarksy
Nelson Johansen
Brian E. Kalmbach
Lisa M. Keene
Sarah Khawand
Mitch Kilgore
Amanda Kirkland
Michael Kunst
Brian R. Lee
Jocelin Malone
Zoe Maltzer
Naomi Martin
Rachel McCue
Delissa McMillen
Emma Meyerdierks
Kelly P. Meyers
Tyler Mollenkopf
Mark Montine
Amber L. Nolan
Julie Nyhus
Paul A. Olsen
Maiya Pacleb
Nicholas Peña
Thanh Pham
Christina Alice Pom
Nadia Postupna
Augustin Ruiz
Aimee M. Schantz
Nadiya V. Shapovalova
Staci A. Sorensen
Brian Staats
Matt Sullivan
Susan M. Sunkin
Carol Thompson
Michael Tieu
Jonathan Ting
Amy Torkelson
Tracy Tran
Ming-Qiang Wang
Jack Waters
Angela M. Wilson
David Haynor
Nicole Gatto
Suman Jayadev
Shoaib Mufti
Lydia Ng
Shubhabrata Mukherjee
Paul K. Crane
Caitlin S. Latimer
Boaz P. Levi
Kimberly Smith
Jennie L. Close
Jeremy A. Miller
Rebecca D. Hodge
Eric B. Larson
Thomas J. Grabowski
Michael Hawrylycz
C. Dirk Keene
Ed S. Lein
Publication Year :
2023
Publisher :
Cold Spring Harbor Laboratory, 2023.

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research atSEA-AD.org.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........3819862faf9d0f4384328a779b869e30
Full Text :
https://doi.org/10.1101/2023.05.08.539485