Back to Search Start Over

Improved oxidation resistance of CoNiCrAlTaHfY/Co coating on C/C composites by vapor phase surface alloying

Authors :
Wen Xi
Wenqiang Ding
Shengwang Yu
Naiming Lin
Qi Guo
Xiaoping Liu
Tianxu Meng
Source :
Journal of Materials Research. 35:500-507
Publication Year :
2019
Publisher :
Springer Science and Business Media LLC, 2019.

Abstract

A CoNiCrAlTaHfY/Co composite coating was prepared on the etched C/C composites by using duplex vapor phase surface alloying treatments, i.e., Co alloying and Co–Ni–Cr–Al–Ta–Hf–Y alloying. Microstructures and oxidation behavior of the coated C/C composites were analyzed by scanning electron microscopy, energy-dispersive spectroscopy, and X-ray diffraction. The result showed that the CoNiCrAlTaHfY/Co composite coating, 25 µm in thickness, was compact and composed of CrCoTa, AlCo2Ta, AlxCry, AlxNiy, and Co. The coating adhesion can be enhanced by microwave plasma chemical vapor deposition etching of matrix surface and adding a Co intermediate layer between the CoNiCrAlTaHfY top layer and C/C composites substrate. The honeycomb structure after etching was helpful to alloying element absorb and diffuse into substrate surface, and the composite coating continuation was improved by the Co buffer layer. After exposing in air for 180 min at 1000 °C, the bulk C/C composites volatilized while the loss rate of coated C/C composites was 0.82%, showing an improved oxidation resistance. Mixed oxides mainly containing Al2O3 and Cr2O3 were formed in the composite coating surface and protected the C/C composites from oxidation in air.

Details

ISSN :
20445326 and 08842914
Volume :
35
Database :
OpenAIRE
Journal :
Journal of Materials Research
Accession number :
edsair.doi...........380f10f6132394819ab1f4a4d8da9df7