Back to Search Start Over

Serotonin receptor subtype-2B signaling is associated with interleukin-18-induced cardiomyoblast hypertrophy in vitro

Authors :
Chao-Yi Chen
Jyh-Gang Leu
Kuan-Yu Lin
Chin-Yu Shih
Yao-Jen Liang
Source :
Asian Biomedicine. 16:79-87
Publication Year :
2022
Publisher :
Walter de Gruyter GmbH, 2022.

Abstract

Background In patients with heart failure, interleukin-18 (IL-18) levels increase in the circulatory system and injured myocardial tissue. Serotonin (5-hydroxytryptamine) receptors subtype 2B (HTR2B) play an essential role in cardiac function and development, and their overexpression in rats leads to myocardial hypertrophy. Epigallocatechin gallate (EGCG) is cardioprotective in myocardial ischemia–reperfusion injury in rats and can prevent pressure overload-mediated cardiac hypertrophy in vivo. Mice deficient in peroxisome proliferator-activated receptor delta (PPARδ) can have cardiac dysfunction, myocardial hypertrophy, and heart failure. Matrix metalloproteinases (MMPs) are possibly involved in cardiac remodeling. However, the relationship between IL-18 signaling, cardiac hypertrophy, and the molecular mechanisms involved remain to be fully elucidated. Objectives To elucidate the relationship between HTR2B and IL-18-induced myocardial hypertrophy and examine the antihypertrophic effects of EGCG and PPARδ. Methods We induced H9c2 cardiomyoblast hypertrophy with IL-18 in vitro and investigated the downstream signaling by real-time polymerase chain reaction (PCR) and western blotting. Hypertrophy was assessed by flow cytometry. We determined the effects of EGCG and PPARδ on IL-18-induced hypertrophic signaling via HTR2B-dependent mechanisms. Results IL-18-induced H9c2 hypertrophy upregulated brain natriuretic peptide (BNP) protein and mRNA expression by inducing the expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and the hypertrophy was attenuated by pretreatment with EGCG (20 μM) and L-165,041 (2 μM), a PPARδ agonist. IL-18 upregulated the expression of HTR2B, which was inhibited by pretreatment with EGCG and L-165,041. SB215505 (0.1 μM), a HTR2B antagonist and siRNA for HTR2B, attenuated H9c2 hypertrophy significantly. Inhibition of HTR2B also downregulated the expression of MMP-3 and MMP-9. Conclusions IL-18 and HTR2B play critical roles in cardiomyoblast hypertrophy. EGCG and L-165,041 inhibit the expression of HTR2B and augment remodeling of H9c2 cardiomyoblasts, possibly mediated by MMP-3 and MMP-9.

Details

ISSN :
1875855X
Volume :
16
Database :
OpenAIRE
Journal :
Asian Biomedicine
Accession number :
edsair.doi...........3591f7b95683fcdab18c3059a67bac13
Full Text :
https://doi.org/10.2478/abm-2022-0010