Back to Search Start Over

Super-enrichment mechanisms of precious metals by low-melting point copper-philic element (LMCE) melts

Authors :
Zhao ShengJin
Wang DaZhao
Liu Jiajun
Xia Qing
Zhai Degao
Zhong RiChen
Gao Shen
Zheng Bo
Source :
Acta Petrologica Sinica. 37:2629-2656
Publication Year :
2021
Publisher :
Chinese Society for Mineralogy, Petrology, and Geochemistry, 2021.

Abstract

低熔点亲铜元素(LMCE)As、Sb、Bi、Hg、Pb、Se、Te、Tl、Sn等,均具有亲铜性、低熔点、半金属的特性,在成矿过程中可以形成LMCE熔体,并对Au、Ag、PGE等贵金属的高效富集沉淀起到一种重要的桥梁作用。作者对前人研究资料与LMCE热力学相图进行了分析,并结合浅成低温热液型、造山型、卡林-类卡林型、碱性-偏碱性侵入岩型金矿床的研究成果,探讨了LMCE熔体形成、类型及其对Au、Ag、PGE等贵金属富集成矿的机理,并提出了LMCE熔体参与成矿的矿物组合与结构特征标志。LMCE熔体可以在岩浆过程、(岩浆)热液过程及变质过程中形成,是贵金属矿床重要的成矿机制之一。LMCE熔体中存在大量原子团簇,团簇间的聚集生长会使熔体难以达到相平衡,形成许多非平衡矿物组合,如包含LMCE的自然元素、金属互化物及含LMCE的多相矿物。Au在LMCE熔体中也可以团簇存在,金团簇聚集形成球状或片状,并形成巨富的金矿体。LMCE熔体形成的矿物常以浑圆状、近浑圆状、不规则状的单个或群体组合的乳滴、珠滴、气泡的微粒包体产在硫化物、硒化物、碲化物、氧化物和硅酸盐矿物内或沿矿物裂隙线形排列,这些LMCE微粒包体是熔体扰动导致熔-熔或熔-液间发生乳化所致,流体沸腾是引起熔体扰动的主要机制。LMCE熔体不能快速淬火结晶,通常在低温下缓慢冷却达到相平衡,形成复杂的矿物组合,该特点即使在微米到纳米级的矿物微粒中也显著存在。熔体-流体包裹体是LMCE熔体参与成矿作用最为直接的证据。固溶体分解结构、熔体退火结构、矿物-熔体二面角结构、溶解-再沉淀结构等也是LMCE熔体参与成矿的标志性结构。

Details

ISSN :
10000569
Volume :
37
Database :
OpenAIRE
Journal :
Acta Petrologica Sinica
Accession number :
edsair.doi...........353e93ca17213b614800641aa8701649