Back to Search
Start Over
Suppression of Hysteresis Effects in Organohalide Perovskite Solar Cells
- Source :
- Advanced Materials Interfaces. 4:1700007
- Publication Year :
- 2017
- Publisher :
- Wiley, 2017.
-
Abstract
- Thin-film solar cell based on hybrid perovskites shows excellent light-to-power conversion efficiencies exceeding 22%. However, the mixed ionic-electronic semiconductor hybrid perovskite exhibits many unusual properties such as slow photocurrent instabilities, hysteresis behavior, and low-frequency giant capacitance, which still question us so far. This study presents a direct surface functionalization of transparent conductive oxide electrode with an ultrathin ≈2 nm thick phosphonic acid based mixed C60/organic self-assembled monolayer (SAM) that significantly reduces hysteresis. Moreover, due to the strong phosphonates bonds with indium tin oxide (ITO) substrates, the SAM/ITO substrates also exhibit an excellent recyclability merit from the perspective of cost effectiveness. Impedance studies find the fingerprint of an ion-based diffusion process in the millisecond to second regime for TiO2-based devices, which, however, is not observed for SAM-based devices at these low frequencies. It is experimentally demonstrated that ion migration can be considerably suppressed by carefully engineering SAM interfaces, which allows effectively suppressing hysteresis and unstable diode behavior in the frequency regime between ≈1 and 100 Hz. It is suggested that a reduced density of ionic defects in combination with the absence of charge carrier accumulation at the interface is the main physical origin for the reduced hysteresis.
- Subjects :
- Photocurrent
Materials science
business.industry
Cost effectiveness
Mechanical Engineering
Nanotechnology
02 engineering and technology
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
0104 chemical sciences
law.invention
Indium tin oxide
Hysteresis
Mechanics of Materials
law
Solar cell
Optoelectronics
Charge carrier
0210 nano-technology
business
Transparent conducting film
Perovskite (structure)
Subjects
Details
- ISSN :
- 21967350
- Volume :
- 4
- Database :
- OpenAIRE
- Journal :
- Advanced Materials Interfaces
- Accession number :
- edsair.doi...........352068dd0654972cd4eeee0c33c3eaaf
- Full Text :
- https://doi.org/10.1002/admi.201700007