Back to Search Start Over

When and why the second-order and bifactor models are distinguishable

Authors :
Maxwell Mansolf
Steven P. Reise
Source :
Intelligence. 61:120-129
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Previous studies (Gignac, 2016; Murray & Johnson, 2013) have explored conditions for which accurate statistical comparison of a second-order and bifactor model is challenging, if not impossible. However, a mathematical basis for this problem has not been offered. We show that a second-order model implies a unique set of tetrad constraints (Bollen & Ting, 1993, 1998, 2000) that the bifactor model does not, and that the two models are distinguishable to the degree that these unique tetrad constraints are violated. Simulated population matrices, and mathematical proofs, are used to demonstrate that: (a) when a second-order model with cross-loadings or correlated residuals is true, fitting a pure (misspecified) second-order model leads to violation of the tetrad constraints, which in turn leads to the chi-square and Bayesian Information Criterion favoring a (misspecified) bifactor model, and (b) a true bifactor model can be identified only when the tetrad constraints of the second-order model are violated, which is mainly a function of the proportionality of loadings. Three model-comparison approaches are offered for applied researchers.

Details

ISSN :
01602896
Volume :
61
Database :
OpenAIRE
Journal :
Intelligence
Accession number :
edsair.doi...........34d5b4a00c0a3586090113593eda2b16
Full Text :
https://doi.org/10.1016/j.intell.2017.01.012