Back to Search Start Over

Netrin G1 promotes pancreatic tumorigenesis through cancer associated fibroblast driven nutritional support and immunosuppression

Authors :
Yan Zhou
Kathy Q. Cai
Yinfei Tan
Karthik Devarajan
Allison N. Lau
Tiffany Luong
Harvey Hensley
Tatiana Pazina
Suraj Peri
Andres J. Klein-Szanto
Matthew G. Vander Heiden
Jessica Wagner
Diana Restifo
Huamin Wang
Edna Cukierman
Neelima Shah
Warren D. Kruger
Ruchi Malik
Débora Barbosa Vendramini-Costa
Dustin Rollins
Igor Astsaturov
Kerry S. Campbell
Wafik S. El-Deiry
Janusz Franco-Barraza
Linara Gabitova
Roshan J. Thapa
Ralph Francescone
Sapna Gupta
Alexander Muir
Siddharth Balachandran
Publication Year :
2018
Publisher :
Cold Spring Harbor Laboratory, 2018.

Abstract

Pancreatic ductal adenocarcinoma (PDAC) has a poor 5-year survival rate and lacks effective therapeutics. Therefore, it is of paramount importance to identify new targets. Using multi-plex data from patient tissue, three-dimensional co-culturing in vitro assays, and orthotopic murine models, we identified Netrin G1 (NetG1) as a promoter of PDAC tumorigenesis. NetG1+ cancer-associated fibroblasts (CAFs) supported PDAC survival, through a NetG1 mediated effect on glutamate/glutamine metabolism. NetG1+ CAFs were intrinsically immunosuppressive and inhibited NK cell mediated killing of tumor cells. These pro-tumor functions were controlled by a signaling circuit downstream to NetG1, which was comprised of AKT/4E-BP1, p38/FRA1, vesicular glutamate transporter 1, and glutamine synthetase. Finally blocking NetG1 with a neutralizing antibody stunted in vivo tumorigenesis, suggesting NetG1 as potential target in PDAC.SignificancePDAC is a devastating disease lacking effective therapies. A major hallmark of PDAC is desmoplasia, characterized by the expansion of CAFs and their extracellular matrix, creating a unique microenvironment that limits blood-supplied nutrition and is highly immunosuppressive. A better understanding of the role of CAFs in PDAC may lead to the identification of new targets for therapeutic intervention. Here, we uncovered roles for NetG1 in CAFs to promote tumorigenesis. NetG1 was important for two major CAF functions: the metabolic support of PDAC cells and the intrinsic immunosuppressive capacity of CAFs. Our results helped clarify the role that CAFs play in PDAC, by defining CAF phenotypes through NetG1 expression. Moreover, we established a link between CAF driven metabolism and their intrinsic immunosuppressive capacity, and identified a signaling circuit that governs NetG1 functions. Finally, we demonstrated the therapeutic potential of inhibiting NetG1 in vivo by limiting tumorigenesis in mice with a neutralizing antibody, illustrating that targeting stromal NetG1 could be an attractive therapeutic approach.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........348fba5889a8254a78fbf4ecc5b36c4c