Back to Search Start Over

In vivoinstability of chorismate causes substrate loss during fermentative production of aromatics

Authors :
Nils J.H. Averesch
Gal Winter
Dariela Nunez-Bernal
Jens O. Krömer
Source :
Yeast. 31:333-341
Publication Year :
2014
Publisher :
Wiley, 2014.

Abstract

Metabolic engineering of microbial strains to produce aromatic compounds deriving from the shikimate pathway is of great interest to the chemical industry as a more sustainable alternative for feedstock production. Chorismate is a significant intermediate in the shikimate pathway. In this study, the formation of phenylalanine and phenylpyruvate as by-products in strains engineered downstream of the chorismate node for increased aromatic production was explored in yeast fermentations. Tracer experiments showed that these compounds are synthesized de novo during fermentation, under conditions in which their synthesis was genetically blocked. Chorismate stability evaluation, as well as deletion mutation analysis throughout the phenylalanine biosynthesis pathway, suggested that this synthesis was a result of intracellular, non-enzymatic rearrangement of chorismate to phenylpyruvate via prephenate, which was followed by enzymatic transamination of phenylpyruvate to form phenylalanine. These results not only aid in the development of strain-engineering strategies to avoid the accumulation of by-products during fermentations aimed at increased aromatics production, but also deepen our understanding of yeast metabolism.

Details

ISSN :
0749503X
Volume :
31
Database :
OpenAIRE
Journal :
Yeast
Accession number :
edsair.doi...........34439b10683927f5db1c2c02ffb9b44f
Full Text :
https://doi.org/10.1002/yea.3025