Back to Search
Start Over
IDENTIFICAÇÃO DE FERRUGEM NA SOJA POR MEIO DE IMAGENS DE ALTA RESOLUÇÃO ESPACIAL
- Source :
- Revista Brasileira de Geografia Física. 12:1003
- Publication Year :
- 2019
- Publisher :
- Revista Brasileira de Geografia Fisica, 2019.
-
Abstract
- O cultivo da soja possui grande importância economica para o Brasil, por ser um dos principais geradores de divisas cambiais para o pais. Porem, mesmo sobre as tecnologias existentes, as lavouras ainda sao constantemente acometidas por doencas foliares, tais como a ferrugem asiatica ( Phakopsora pachyrhizi ), das quais e uma das doencas mais destrutivas para a producao de soja, que muitas vezes provoca perda de rendimento significativo e rapidamente dissemina-se de campo para campo atraves de uredosporos dispersos no ar. Para implementar tratamentos de fungicidas em tempo habil a um controle eficaz da doenca, e essencial detectar a infeccao e a severidade da ferrugem da soja. Como forma de identificacao primaria desta infeccao, a presente pesquisa embasou-se na utilizacao do sensoriamento remoto atraves de imagem multiespectral de alta resolucao espacial (RapidEye) para detectar, discriminar e espacializar a possivel ocorrencia de ferrugem na soja em distintos niveis de gravidade. Para isto foi utilizado um indice de cor da lesao e a caracterizacao multiespectral para se detectar o patogeno nas imagens, e os indices de vegetacao para inferir as areas de infestacao. A partir das cartas geradas foi possivel caracterizar espacialmente as areas de ferrugem em estagio intermediario e avancado da infeccao, mesmo considerando-se a inexistencia de pontos de verificacao em campo. Entretanto a metodologia aqui aplicada, nao foi capaz de detectar o patogeno precoce. Identification of soil rust through high space image images A B S T R A C T Soybean cultivation has had great economic importance for Brazil, since it is one of the main generators of foreign exchange for the country. However, despite all existing technologies, crops are still constantly being affected by foliar diseases such as Asian soybean rust ( Phakopsora pachyrhizi ), which is one of the most destructive diseases of soybean, frequently causing significant loss of yield and rapid field-to-field dissemination through urospores dispersed in the air. In order to implement fungicide treatments in a timely manner for effective disease control, it is essential to detect an infection and severity of soybean rust. As a form of primary infection identification, the present research was based on the use of remote sensing recorded by multispectral high spatial resolution image (RapidEye) to detect, discriminate and spatialize a possible occurrence of soybean rust at different levels of severity. For this, a color index and a multispectral characterization were used for pathogen detection in images, and the vegetation indices to be inferred as areas of infestation. From the generated letters, it was possible to characterize spatially as rust areas in intermediate and advanced infection stages, even considering the lack of checkpoints in the field. However, a methodology applied here was not able to detect the early pathogen. Keywords: Glycine max, Phakopsora pachyrhizi, imagens multiespectrais; deteccao de areas infectdas.
- Subjects :
- Atmospheric Science
Pathogen detection
biology
Geography, Planning and Development
Forestry
biology.organism_classification
Rust
Disease control
Geophysics
Phakopsora pachyrhizi
High spatial resolution
Foreign exchange
Computers in Earth Sciences
Soybean rust
Asian soybean rust
Earth-Surface Processes
General Environmental Science
Subjects
Details
- ISSN :
- 19842295
- Volume :
- 12
- Database :
- OpenAIRE
- Journal :
- Revista Brasileira de Geografia Física
- Accession number :
- edsair.doi...........340e738e570e4636fcb404c4451ec295