Back to Search Start Over

Charge-Carrier Recombination in Halide Perovskites

Authors :
Kyle Frohna
David Emin
Samuel D. Stranks
David S. Ginger
Vladimir Bulovic
Dane W. deQuilettes
Thomas Kirchartz
Source :
Chemical Reviews. 119:11007-11019
Publication Year :
2019
Publisher :
American Chemical Society (ACS), 2019.

Abstract

The success of halide perovskites in a host of optoelectronic applications is often attributed to their long photoexcited carrier lifetimes, which has led to charge-carrier recombination processes being described as unique compared to other semiconductors. Here, we integrate recent literature findings to provide a critical assessment of the factors we believe are most likely controlling recombination in the most widely studied halide perovskite systems. We focus on four mechanisms that have been proposed to affect measured charge carrier recombination lifetimes, namely: (1) recombination via trap states, (2) polaron formation, (3) the indirect nature of the bandgap (e.g., Rashba effect), and (4) photon recycling. We scrutinize the evidence for each case and the implications of each process on carrier recombination dynamics. Although they have attracted considerable speculation, we conclude that multiple trapping or hopping in shallow trap states, and the possible indirect nature of the bandgap (e.g., Rashba effect), seem to be less likely given the combined evidence, at least in high-quality samples most relevant to solar cells and light-emitting diodes. On the other hand, photon recycling appears to play a clear role in increasing apparent lifetime for samples with high photoluminescence quantum yields. We conclude that polaron dynamics are intriguing and deserving of further study. We highlight potential interdependencies of these processes and suggest future experiments to better decouple their relative contributions. A more complete understanding of the recombination processes could allow us to rationally tailor the properties of these fascinating semiconductors and will aid the discovery of other materials exhibiting similarly exceptional optoelectronic properties.

Details

ISSN :
15206890 and 00092665
Volume :
119
Database :
OpenAIRE
Journal :
Chemical Reviews
Accession number :
edsair.doi...........338a28590ee747a77a0e20941a29e5fc