Back to Search Start Over

Amitsur cohomology of cubic extensions of algebraic integers

Authors :
David E. Dobbs
Source :
Israel Journal of Mathematics. 14:213-220
Publication Year :
1973
Publisher :
Springer Science and Business Media LLC, 1973.

Abstract

LetK be the rational fieldQ or a complex quadratic number field other than\(Q(\sqrt { - 3} )\). LetL be a normal three-dimensional field extension onK. IfR andS are the rings of algebraic integers ofK andL respectively, then the Amitsur cohomology groupH 2 (S/R, U) is trivial. Inflation and class numbers give information about cohomology arising from certain nonnormal cubic extensions.

Details

ISSN :
15658511 and 00212172
Volume :
14
Database :
OpenAIRE
Journal :
Israel Journal of Mathematics
Accession number :
edsair.doi...........335c1449b4cd11a6d619a5eadb014995
Full Text :
https://doi.org/10.1007/bf02762676