Back to Search Start Over

Solar Wind ∼0.15–1.5 keV Electrons around Corotating Interaction Regions at 1 au

Authors :
Robert F. Wimmer-Schweingruber
Chadi Salem
Gang Li
Jiawei Tao
Linghua Wang
Stuart D. Bale
Lan Jian
Source :
The Astrophysical Journal. 922:198
Publication Year :
2021
Publisher :
American Astronomical Society, 2021.

Abstract

Here we present a statistical study of the ∼0.15–1.5 keV suprathermal electrons observed in uncompressed/compressed slow and fast solar wind around 59 corotating interaction regions (CIRs) with good measurements by Wind 3DP from 1995 through 1997. For each of these CIRs, we fit the strahl and halo energy spectra at ∼0.15–1.5 keV to a Kappa function with a Kappa index κ and kinetic temperature T eff. We find that the ∼0.15–1.5 keV strahl electrons behave similarly in both slow and fast wind: the strahl number density n s positively correlates with the solar wind electron temperature T e and interplanetary magnetic field magnitude ∣B∣, while the strahl pitch angle width Θ s decreases with the solar wind speed V sw. These suggest that the strahl electrons are generated by a similar/same process at the Sun in both slow and fast wind that produces these correlations, and the scattering efficiency of strahl in the interplanetary medium (IPM) decreases with V sw. The ∼0.15–1.5 keV halo electrons also behave similarly in both slow and fast wind: the halo parameter positively correlates with the corresponding strahl parameter, and the halo number density n h positively correlates only with T e . These indicate that the halo formation process in the IPM retains most of the strahl properties, but it erases the relationship between n s and ∣B∣. In addition, κ in compressed wind distributes similarly to that in uncompressed wind, for both the strahl and halo. It shows that CIRs at 1 au are not a significant/effective acceleration source for the strahl and halo.

Details

ISSN :
15384357 and 0004637X
Volume :
922
Database :
OpenAIRE
Journal :
The Astrophysical Journal
Accession number :
edsair.doi...........3351ce293fb2915d53e380a1ce400f68