Back to Search
Start Over
Sharp Bounds for the Signless Laplacian Spectral Radius of Uniform Hypergraphs
- Source :
- Bulletin of the Iranian Mathematical Society. 45:583-591
- Publication Year :
- 2018
- Publisher :
- Springer Science and Business Media LLC, 2018.
-
Abstract
- Let $$\mathcal {H}$$ be a k-uniform hypergraph on n vertices with degree sequence $$\Delta =d_1 \ge \cdots \ge d_n=\delta $$ . $$E_i$$ denotes the set of edges of $$\mathcal {H}$$ containing i. The average 2-degree of vertex i of $$\mathcal {H}$$ is $$m_i = {\sum \nolimits _{\{ i,i_2 , \ldots i_k \} \in E_i } {d_{i_2 } \ldots d_{i_k } } } / d_i^{k - 1}$$ . In this paper, in terms of $$m_i$$ and $$d_i$$ , we give some upper bounds and lower bounds for the spectral radius of the signless Laplacian tensor ( $$Q(\mathcal {H})$$ ) of $$\mathcal {H}$$ . Some examples are given to show the tightness of these bounds.
- Subjects :
- Hypergraph
Mathematics::Combinatorics
Mathematics::Commutative Algebra
Spectral radius
010103 numerical & computational mathematics
0102 computer and information sciences
Signless laplacian
01 natural sciences
Vertex (geometry)
Combinatorics
010201 computation theory & mathematics
Pharmacology (medical)
Tensor
0101 mathematics
Mathematics
Subjects
Details
- ISSN :
- 17358515 and 1017060X
- Volume :
- 45
- Database :
- OpenAIRE
- Journal :
- Bulletin of the Iranian Mathematical Society
- Accession number :
- edsair.doi...........33357c0ad769c8e74ad088b281d2752b
- Full Text :
- https://doi.org/10.1007/s41980-018-0150-6