Back to Search
Start Over
On k-quasi- $$*$$ ∗ -paranormal operators
- Source :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas. 110:655-666
- Publication Year :
- 2015
- Publisher :
- Springer Science and Business Media LLC, 2015.
-
Abstract
- For a positive integer k, an operator \(T\in \mathscr {B}(\mathscr {H})\) is called k-quasi-\(*\)-paranormal if \(\Vert T^*T^kx\Vert ^2\le \Vert T^kx\Vert \Vert T^{k+2}x\Vert \) for all \(x\in \mathscr {H}\), which is a common generalization of \(*\)-paranormal and quasi-\(*\)-paranormal. In this paper, firstly we prove some inequalities of this class of operators; secondly we give a necessary and sufficient condition for T to be k-quasi-\(*\)-paranormal. Using these results, we prove that: (1) if \(\Vert T^*T^n\Vert =\Vert T^n\Vert \Vert T\Vert \) for some positive integer \(n\ge k,\) then a k-quasi-\(*\)-paranormal operator T is normaloid; (2) if E is the Riesz idempotent for an isolated point \(\mu _0\) of the spectrum of a k-quasi-\(*\)-paranormal operator T, then (i) if \(\mu _0\ne 0\), then \(\mathscr {R}(E)=\ker (T-\mu _0)\) (ii) if \(\mu _0=0\), then \(\mathscr {R}(E)=\ker (T^k)\).
- Subjects :
- Pure mathematics
Algebra and Number Theory
Applied Mathematics
010102 general mathematics
Spectrum (functional analysis)
010103 numerical & computational mathematics
01 natural sciences
Combinatorics
Computational Mathematics
Operator (computer programming)
Idempotence
Geometry and Topology
0101 mathematics
Analysis
Mathematics
Subjects
Details
- ISSN :
- 15791505 and 15787303
- Volume :
- 110
- Database :
- OpenAIRE
- Journal :
- Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas
- Accession number :
- edsair.doi...........32eb31454ef9e31aae7ec9b52353cee6