Back to Search Start Over

[Untitled]

Authors :
Corinne Leyval
J.M. Portal
Ph. Binet
Source :
Plant and Soil. 227:207-213
Publication Year :
2000
Publisher :
Springer Science and Business Media LLC, 2000.

Abstract

Polycyclic aromatic hydrocarbons (PAH) can be degraded in the rhizosphere but may also interact with vegetation by accumulation in plant tissues or adsorption on root surface. Previous studies have shown that arbuscular mycorrhizal (AM) fungi contribute to the establishment and maintenance of plants in a PAH contaminated soil. We investigated the fate of PAH in the rhizosphere and mycorrhizosphere including biodegradation, uptake and adsorption. Experiments were conducted with ryegrass inoculated or not with Glomus mosseae P2 (BEG 69) and cultivated in pots filled with soil spiked with 5 g kg−1 of anthracene or with 1 g kg−1 of a mixture of 8 PAH in a growth chamber. PAH were extracted from root surfaces, root and shoot tissue and rhizosphere soil and were analysed by GC-MS. In both experiments, 0.006 – 0.11‰ of the initial extractable PAH concentration were adsorbed to roots, 0.003 – 0.16‰ were found in root tissue, 0.001‰ in shoot tissue and 36 – 66% were dissipated, suggesting that the major part of PAH dissipation in rhizosphere soil was due to biodegradation or biotransformation. With mycorrhizal plants, anthracene and PAH were less adsorbed to roots and shoot tissue concentrations were lower than with non mycorrhizal plants, which could contribute to explain the beneficial effect of AM fungi on plant survival in PAH contaminated soils.

Details

ISSN :
0032079X
Volume :
227
Database :
OpenAIRE
Journal :
Plant and Soil
Accession number :
edsair.doi...........32eae67b4caa552d55168dec8dfaca7c