Back to Search Start Over

Supervised Learning for the Prediction of Firm Dynamics

Authors :
Massimo Riccaboni
Falco J. Bargagli-Stoffi
Jan Niederreiter
Source :
Data Science for Economics and Finance ISBN: 9783030668907
Publication Year :
2021
Publisher :
Springer International Publishing, 2021.

Abstract

Thanks to the increasing availability of granular, yet high-dimensional, firm level data, machine learning (ML) algorithms have been successfully applied to address multiple research questions related to firm dynamics. Especially supervised learning (SL), the branch of ML dealing with the prediction of labelled outcomes, has been used to better predict firms’ performance. In this chapter, we will illustrate a series of SL approaches to be used for prediction tasks, relevant at different stages of the company life cycle. The stages we will focus on are (1) startup and innovation, (2) growth and performance of companies, and (3) firms’ exit from the market. First, we review SL implementations to predict successful startups and R&D projects. Next, we describe how SL tools can be used to analyze company growth and performance. Finally, we review SL applications to better forecast financial distress and company failure. In the concluding section, we extend the discussion of SL methods in the light of targeted policies, result interpretability, and causality.

Details

ISBN :
978-3-030-66890-7
ISBNs :
9783030668907
Database :
OpenAIRE
Journal :
Data Science for Economics and Finance ISBN: 9783030668907
Accession number :
edsair.doi...........325dba10be8f30545b5c9c92a2d03e5b
Full Text :
https://doi.org/10.1007/978-3-030-66891-4_2