Back to Search
Start Over
Doping transition of doped ZnO nanorods measured by Kelvin probe force microscopy
- Source :
- Thin Solid Films. 520:4622-4625
- Publication Year :
- 2012
- Publisher :
- Elsevier BV, 2012.
-
Abstract
- We have investigated the doping transition of one-dimensional (1-D) doped-ZnO nanorods with Kelvin probe force microscopy (KPFM). Vertically aligned (undoped, As-doped, and undoped/As-doped homo-junction) ZnO nanorods were grown on Si (111) substrates without any catalyst by vapor phase transport. Individual ZnO nanorods are removed from the substrates and transferred onto thin Au films grown on Si substrates. The morphology and surface potentials of the nanorods were measured simultaneously by the KPFM. For the homo-junction nanorods with ~ 250 nm in diameter, the KPFM image shows localization of the doping transition along the nanorods. The measured Kelvin signal (surface potential) across the junction induces the work function difference between the undoped and the As-doped region of ~ 85 meV. Also, the work function of As-doped nanorods is ~ 95 meV higher than that of intrinsically undoped nanorods grown in similar conditions. These consistent results indicate that the KPFM is reliable to determine the localization of the doping transition in 1-D structures.
- Subjects :
- Kelvin probe force microscope
Materials science
Morphology (linguistics)
business.industry
Doping
Vapor phase
Metals and Alloys
Nanotechnology
Surfaces and Interfaces
Surfaces, Coatings and Films
Electronic, Optical and Magnetic Materials
Catalysis
Microscopy
Materials Chemistry
Optoelectronics
Nanorod
Work function
business
Subjects
Details
- ISSN :
- 00406090
- Volume :
- 520
- Database :
- OpenAIRE
- Journal :
- Thin Solid Films
- Accession number :
- edsair.doi...........3225b32985406ba934ca2dcc61c358c0
- Full Text :
- https://doi.org/10.1016/j.tsf.2011.10.129