Back to Search
Start Over
Selective recognition of 2,4,5-trichlorophenol by temperature responsive and magnetic molecularly imprinted polymers based on halloysite nanotubes
- Source :
- Journal of Materials Chemistry. 22:3360
- Publication Year :
- 2012
- Publisher :
- Royal Society of Chemistry (RSC), 2012.
-
Abstract
- Fe3O4/Halloysite nanotube magnetic composites (MHNTs) were firstly prepared via an effective polyol-medium solvothermal method, and then the surface of the MHNTs was endowed with reactive vinyl groups through modification with 3-(methacryloyloxy)propyl trimethoxysilane (MPS). Based on the MHNTs-MPS, temperature responsive and magnetic molecularly imprinted polymers (t-MMIPs) were further synthesized by adopting methacrylic acid (MAA) and N-isopropylacrylamide (NIPAM) as the functional monomer and temperature responsive monomer, respectively. The as-prepared t-MMIPs were characterized by FT-IR, TEM, TGA and VSM, which indicated that the t-MMIPs exhibit magnetic sensitivity (Ms = 2.026 emu g−1), magnetic stability (especially in the pH range of 4.0–8.0) and thermal stability and are composed of an imprinted layer. The molecular interaction between 2,4,5-trichlorophenol (TCP) and MAA was investigated by 1H-NMR spectroscopy and ultraviolet absorption spectroscopy, which suggest that hydrogen bonding may be largely responsible for the recognition mechanism. The t-MMIPs were then applied to selectively recognise and release TCP molecules at 60 °C and 20 °C, respectively. The maximum amount of binding at 60 °C was 197.8 mg g−1 and 122.6 mg g−1 for t-MMIPs and temperature responsive and magnetic non-imprinted polymers (t-MNIPs), respectively. At 20 °C, about 32.3%–42.7% of TCP adsorbed by t-MMIPs was released, whereas 25.3%–39.9% of TCP was released by t-MNIPs. The selective recognition experiments demonstrated the high affinity and selectivity of t-MMIPs towards TCP over competitive phenolic compounds, and the specific recognition of binding sites may be based on the distinct size, structure and functional group to the template molecules.
- Subjects :
- chemistry.chemical_classification
Materials science
Hydrogen bond
Molecularly imprinted polymer
General Chemistry
Polymer
engineering.material
Halloysite
chemistry.chemical_compound
Monomer
Adsorption
chemistry
Methacrylic acid
Chemical engineering
Polymer chemistry
Materials Chemistry
engineering
Thermal stability
Subjects
Details
- ISSN :
- 13645501 and 09599428
- Volume :
- 22
- Database :
- OpenAIRE
- Journal :
- Journal of Materials Chemistry
- Accession number :
- edsair.doi...........31a926605aa196b63056b9a75a95e221
- Full Text :
- https://doi.org/10.1039/c1jm14825g