Back to Search
Start Over
Reducing Computational Complexity of Network Analysis using Graph Compression Method for Brand Awareness Effort
- Source :
- Proceedings of the 3rd International Conference on Computation for Science and Technology.
- Publication Year :
- 2015
- Publisher :
- Atlantis Press, 2015.
-
Abstract
- Online� social� media� provides� platform� for� social� interactions.� This� platform� produce� large-scale� data� generated� mostly� from� online� conversations.� Network� analysis� can� help� us� to� mine� knowledge� and� pattern� from� the� relationship� between� actors� inside� the� network.� This� approach� has� been� crucial� in� supporting� prediction� and� decision-making� process.� In� marketing� context� such� as� branding� effort,� using� large-scale� conversation� data� is� cheaper,� faster� and� reliable� comparing� mainstream� approaches� such� as� questionnaire� and� sampling.� Social� network� analysis� provides� several� metrics,� which� was� built� with� no� scalability� in� minds,� thus� it� is� computationally� exhaustive.� Some� metrics� such� as� centrality� and� community� detections� has� exponential� time� and� space� complexity.� With� the� availability� of� cheap� but� large-scale� data,� our� challenge� is� how� to� measure� social� interactions� based� on� those� large-scale� data.� In� this� paper,� we� present� our� approach� to� reduce� the� computational� complexity� of� social� network� analysis� metrics� based� on� graph� compression� method� to� solve� real� world� brand� awareness� effort.�
Details
- ISSN :
- 2352538X
- Database :
- OpenAIRE
- Journal :
- Proceedings of the 3rd International Conference on Computation for Science and Technology
- Accession number :
- edsair.doi...........311078b2eb66d88ea1fd30eadb09e70b
- Full Text :
- https://doi.org/10.2991/iccst-15.2015.26