Back to Search
Start Over
Cellular responses of osteoblast-like cells to 17 elemental metals
- Source :
- Journal of Biomedical Materials Research Part A. 105:148-158
- Publication Year :
- 2016
- Publisher :
- Wiley, 2016.
-
Abstract
- Elemental metals have been widely used to alloy metallic orthopedic implants. However, there is still insufficient research data elucidating the cell responses of osteoblastic cells to alloying elemental metals, which impedes the development of new metallic implant materials. In this study, the cellular responses of osteoblast-like cells (SaOS2) to 17 pure alloying elemental metals, that is, titanium (Ti), zirconium (Zr), hafnium (Hf), vanadium (V), niobium (Nb), tantalum (Ta), chromium (Cr), molybdenum (Mo), manganese (Mn), iron (Fe), ruthenium (Ru), cobalt (Co), nickel (Ni), copper (Cu), zinc (Zn), silicon (Si), and tin (Sn) were comparatively investigated in vitro. Cellular responses including intracellular total protein synthesis and collagen content, cell adhesion, cell proliferation, and alkaline phosphatase (ALP) activity on these elemental metals were systematically assessed and compared. It was found that these elemental metals could be categorized into three groups based on the cellular functions on them. Group 1, including Ti, Zr, Hf, Nb, Ta, Cr, Ru, and Si, showed excellent cell proliferation and varied ALP activity for SaOS2 cells. Cells exposed to Group 2, including Mo and Sn, although initially attached and grew, did not proliferate over time. In contrast, Group 3, including V, Mn, Fe, Co, Ni, Cu, and Zn, showed severe cytotoxicity toward SaOS2 cells. It is vital to consider the cell responses to the elemental metals when designing a new metallic implant material and the findings of this study provide insights into the biological performance of the elemental metals. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 148-158, 2017.
- Subjects :
- 0301 basic medicine
Zirconium
Materials science
Metallurgy
Metals and Alloys
Biomedical Engineering
chemistry.chemical_element
Vanadium
02 engineering and technology
Manganese
Zinc
021001 nanoscience & nanotechnology
Biomaterials
Metal
03 medical and health sciences
Nickel
Chromium
030104 developmental biology
chemistry
visual_art
Ceramics and Composites
visual_art.visual_art_medium
0210 nano-technology
Cobalt
Nuclear chemistry
Subjects
Details
- ISSN :
- 15493296
- Volume :
- 105
- Database :
- OpenAIRE
- Journal :
- Journal of Biomedical Materials Research Part A
- Accession number :
- edsair.doi...........3058040addb720f9371a50f07da52b6f