Back to Search
Start Over
Dynamic orbital hybridization triggered spin-disorder renormalization via super-exchange interaction for oxygen evolution reaction
- Source :
- Proceedings of the National Academy of Sciences. 120
- Publication Year :
- 2023
- Publisher :
- Proceedings of the National Academy of Sciences, 2023.
-
Abstract
- The oxygen evolution reaction (OER) underpins many aspects of energy storage and conversion in modern industry and technology, but which still be suffering from the dilemma of sluggish reaction kinetics and poor electrochemical performance. Different from the viewpoint of nanostructuring, this work focuses on an intriguing dynamic orbital hybridization approach to renormalize the disordering spin configuration in porous noble-metal–free metal–organic frameworks (MOFs) to accelerate the spin-dependent reaction kinetics in OER. Herein, we propose an extraordinary super-exchange interaction to reconfigure the domain direction of spin nets at porous MOFs through temporarily bonding with dynamic magnetic ions in electrolytes under alternating electromagnetic field stimulation, in which the spin renormalization from disordering low-spin state to high-spin state facilitates rapid water dissociation and optimal carrier migration, leading to a spin-dependent reaction pathway. Therefore, the spin-renormalized MOFs demonstrate a mass activity of 2,095.1 A g metal −1 at an overpotential of 0.33 V, which is about 5.9 time of pristine ones. Our findings provide a insight into reconfiguring spin-related catalysts with ordering domain directions to accelerate the oxygen reaction kinetics.
- Subjects :
- Multidisciplinary
Subjects
Details
- ISSN :
- 10916490 and 00278424
- Volume :
- 120
- Database :
- OpenAIRE
- Journal :
- Proceedings of the National Academy of Sciences
- Accession number :
- edsair.doi...........3040d579f11ba8347b69358087841098