Back to Search Start Over

Radio-Frequency Interference Estimation for Multiple Random Noise Sources

Authors :
Haochen Yang
Xiangrui Su
Deepak Pai
Qiaolei Huang
Chulsoon Hwang
Jagan Rajagopalan
Ling Zhang
Jun Fan
Source :
IEEE Transactions on Electromagnetic Compatibility. 64:358-366
Publication Year :
2022
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2022.

Abstract

As more compact designs and more assembled function modules are utilized in modern electronic devices, radio-frequency interference (RFI) source reconstruction is becoming more challenging because different noise sources may contribute simultaneously. This article presents a novel methodology to reconstruct multiple random noise sources on a real-world product, including several double-data-rate (DDR) memory modules and a high-speed connector. The DDR modules located beneath a heatsink cause random noise-like signals, which renders phase measurements challenging. An approach based on the tuned-receiver mode of a vector network analyzer is developed to measure the field phase from the random DDR signals, which can be further modeled with a Huygens’ box using the measured field magnitude and phase. Moreover, the connector can be modeled using an equivalent magnetic dipole. Furthermore, the total RFI power from the DDR memory modules and the high-speed connector, which generate uncorrelated RFI noise, is found to equal the summation of the individual power values obtained by an root mean square detector, which can be mathematically corroborated. Using the proposed method, the reconstructed source model can predict RFI values close to measurement results with less than 5 dB deviation.

Details

ISSN :
1558187X and 00189375
Volume :
64
Database :
OpenAIRE
Journal :
IEEE Transactions on Electromagnetic Compatibility
Accession number :
edsair.doi...........2fbef08c2bb0ecf41cab01cf0a939d91