Back to Search
Start Over
Hydrodynamic extensional stress during the bubble bursting process for bioreactor system design
- Source :
- Korea-Australia Rheology Journal. 28:315-326
- Publication Year :
- 2016
- Publisher :
- Springer Science and Business Media LLC, 2016.
-
Abstract
- Cell damage, one of critical issues in the bioreactor design for animal cell culture, is caused mainly from the bubble bursting at the free surface subjected to strong extensional flows. In this work, extensive computational studies are performed to investigate bubble bursting process in great details. Extensive numerical simulations are performed for a wide range of bubble diameters (from 0.5 to 6 mm) and the surface tension values (from 0.03 to 0.072 N/m), with which effects of the bubble size and surfactant (PF68) concentration on the hydrodynamic stress are investigated. For all the cases, the maximum extensional stress appears at the instance when receding films impact each other at the bottom of the bubble. A model equation based on numerical simulations is presented to predict the maximum extensional stress as a function of the bubble diameter and the surface tension. The bubble diameter has turned out to contribute significantly the maximum hydrodynamic extensional stress. In addition, the bubble collapsed time and the affected volume around a bubble subjected to the critical extensional stress are investigated. The extensional stress estimation is reported as a function of the bubble size and the surface tension. The influence of the bubble size on the maximum stress dominates and extensional stress reaches up to the order of 104 Pa for bubble size of 0.5 mm.
- Subjects :
- 0106 biological sciences
Work (thermodynamics)
Materials science
Bubble
Mechanics
Condensed Matter Physics
01 natural sciences
010305 fluids & plasmas
Physics::Fluid Dynamics
Stress (mechanics)
Surface tension
Volume (thermodynamics)
Surface-tension values
010608 biotechnology
Free surface
0103 physical sciences
Bioreactor
General Materials Science
Geotechnical engineering
Subjects
Details
- ISSN :
- 20937660 and 1226119X
- Volume :
- 28
- Database :
- OpenAIRE
- Journal :
- Korea-Australia Rheology Journal
- Accession number :
- edsair.doi...........2f206da7b4e856a35fe802d27d4c2104
- Full Text :
- https://doi.org/10.1007/s13367-016-0032-5