Back to Search Start Over

A Universal Point Set for 2-Outerplanar Graphs

Authors :
Till Bruckdorfer
Michael Kaufmann
Tamara Mchedlidze
Patrizio Angelini
Source :
Lecture Notes in Computer Science ISBN: 9783319272603, Graph Drawing
Publication Year :
2015
Publisher :
Springer International Publishing, 2015.

Abstract

A point set $$S \subseteq \mathbb {R}^2$$ is universal for a class $$\mathcal G$$ if every graph of $$\mathcal{G}$$ has a planar straight-line embedding on S. It is well-known that the integer grid is a quadratic-size universal point set for planar graphs, while the existence of a sub-quadratic universal point set for them is one of the most fascinating open problems in Graph Drawing. Motivated by the fact that outerplanarity is a key property for the existence of small universal point sets, we study 2-outerplanar graphs and provide for them a universal point set of size $$On \log n$$.

Details

ISBN :
978-3-319-27260-3
ISBNs :
9783319272603
Database :
OpenAIRE
Journal :
Lecture Notes in Computer Science ISBN: 9783319272603, Graph Drawing
Accession number :
edsair.doi...........2f1900a0d3d1174aaf2b50d312c0c84c
Full Text :
https://doi.org/10.1007/978-3-319-27261-0_34