Back to Search
Start Over
A reduced-precision network for image reconstruction
- Source :
- ACM Transactions on Graphics. 39:1-12
- Publication Year :
- 2020
- Publisher :
- Association for Computing Machinery (ACM), 2020.
-
Abstract
- Neural networks are often quantized to use reduced-precision arithmetic, as it greatly improves their storage and computational costs. This approach is commonly used in image classification and natural language processing applications. However, using a quantized network for the reconstruction of HDR images can lead to a significant loss in image quality. In this paper, we introduce QW-Net , a neural network for image reconstruction, in which close to 95% of the computations can be implemented with 4-bit integers. This is achieved using a combination of two U-shaped networks that are specialized for different tasks, a feature extraction network based on the U-Net architecture, coupled to a filtering network that reconstructs the output image. The feature extraction network has more computational complexity but is more resilient to quantization errors. The filtering network, on the other hand, has significantly fewer computations but requires higher precision. Our network recurrently warps and accumulates previous frames using motion vectors, producing temporally stable results with significantly better quality than TAA, a widely used technique in current games.
- Subjects :
- Contextual image classification
Computational complexity theory
Artificial neural network
Computer science
business.industry
Image quality
Computation
Feature extraction
ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION
020207 software engineering
Pattern recognition
02 engineering and technology
Iterative reconstruction
Computer Graphics and Computer-Aided Design
Image (mathematics)
0202 electrical engineering, electronic engineering, information engineering
Artificial intelligence
business
Subjects
Details
- ISSN :
- 15577368 and 07300301
- Volume :
- 39
- Database :
- OpenAIRE
- Journal :
- ACM Transactions on Graphics
- Accession number :
- edsair.doi...........2ef6bddb54d698dcb28f010ed1cbb929