Back to Search Start Over

Aerosols, Clouds, and Precipitation in the North-Atlantic Trades Observed During the Barbados Aerosol Cloud Experiment. Part I: Distributions and Variability

Authors :
Eunsil Jung
Bruce A. Albrecht
Graham Feingold
Haflidi H. Jonsson
Patrick Chuang
Shaunna L. Donaher
Publication Year :
2016
Publisher :
Copernicus GmbH, 2016.

Abstract

Shallow marine cumulus clouds are by far the most frequently observed cloud type over the Earth's oceans; but they are poorly understood and have not been investigated as extensively as stratocumulus clouds. This study describes and discusses the properties and variations of aerosol, cloud, and precipitation associated with shallow marine cumulus clouds observed in the North-Atlantic trades during a field campaign (Barbados Aerosol Cloud Experiment- BACEX, March–April, 2010), which took place off of Barbados where African dust periodically affects the region. The principal observing platform was the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter (TO) research aircraft, which was equipped with standard meteorological instruments, a zenith pointing cloud radar and probes that measured aerosol, cloud, and precipitation characteristics. The temporal variation and vertical distribution of aerosols observed from the 15 flights, which included the most intense African dust event during all of 2010 at Barbados, showed a wide range of aerosol conditions. During dusty periods, aerosol concentrations increased substantially in the size range between 0.5 μm and 10 μm (diameter), particles that large enough to be effective giant cloud condensation nuclei (CCN). The 10-day back trajectories showed three distinct air masses with distinct vertical structures associated with air masses originating in the Atlantic (typical maritime air mass with relatively low aerosol concentrations in the marine boundary layer), Africa (Saharan Air Layer), and mid-latitudes (continental pollution plumes). Despite the large differences in the total mass loading and the origin of the aerosols, the overall shapes of the aerosol particle size distributions were consistent, with the exception of the transition period. The TO was able to sample many clouds at various phases of growth. Maximum cloud depth observed was less than ~ 3 km, while most clouds were less than 1 km deep. Clouds tend to precipitate when the cloud is thicker than 500–600 m. Distributions of cloud field characteristics (depth, radar reflectivity, Doppler velocity, precipitation) were well identified in the reflectivity-velocity diagram from the cloud radar observations. Two types of precipitation features were observed for shallow marine cumulus clouds that may impact boundary layer differently: first, a classic cloud-base precipitation where precipitation shafts were observed to emanate from the cloud base; second, cloud-top precipitation where precipitation shafts emanated mainly near the cloud tops, sometimes accompanied by precipitation near the cloud base. The second type of precipitation was more frequently observed during the experiment. Only 42–44 % of the clouds sampled were non-precipitating throughout the entire cloud layer and the rest of clouds showed precipitation somewhere in the cloud, predominantly closer to the cloud top.

Details

Database :
OpenAIRE
Accession number :
edsair.doi...........2e628c5b55ab3a9a62cb37777f84b2c4