Back to Search Start Over

Polarimetric Signatures in Landfalling Tropical Cyclones

Authors :
Jiaxi Hu
Greg M. McFarquhar
Benjamin A. Schenkel
Alexandre O. Fierro
Anthony C. Didlake
Jonathan Zawislak
Cameron R. Homeyer
Alexander V. Ryzhkov
Jeffrey B. Basara
Amanda M. Murphy
Source :
Monthly Weather Review. 149:131-154
Publication Year :
2021
Publisher :
American Meteorological Society, 2021.

Abstract

Polarimetric radar observations from the NEXRAD WSR-88D operational radar network in the contiguous United States, routinely available since 2013, are used to reveal three prominent microphysical signatures in landfalling tropical cyclones: 1) hydrometeor size sorting within the eyewall convection, 2) vertical displacement of the melting layer within the inner core, and 3) dendritic growth layers within stratiform regions of the inner core. Size sorting signatures within eyewall convection are observed with greater frequency and prominence in more intense hurricanes, and are observed predominantly within the deep-layer environmental wind shear vector-relative quadrants that harbor the greatest frequency of deep convection (i.e., downshear and left-of-shear). Melting-layer displacements are shown that exceed 1 km in altitude compared to melting-layer altitudes in outer rainbands and are complemented by analyses of archived dropsonde data. Dendritic growth and attendant snow aggregation signatures in the inner core are found to occur more often when echo-top altitudes are low (≤10 km MSL), nearer the −15°C isotherm commonly associated with dendritic growth. These signatures, uniquely observed by polarimetric radar, provide greater insight into the physical structure and thermodynamic characteristics of tropical cyclones, which are important for improving rainfall estimation and the representation of tropical cyclones in numerical models.

Details

ISSN :
15200493 and 00270644
Volume :
149
Database :
OpenAIRE
Journal :
Monthly Weather Review
Accession number :
edsair.doi...........2d52c0cc3757f14baab3c9913d950db3