Back to Search Start Over

Tree growth performance and estimation of wood quality in plantation trials for Maesopsis eminii and Shorea spp

Authors :
Iskandar Z. Siregar
Suhada Andini
Descarlo Worabai
Prijanto Pamungkas
Lina Karlinasari
Sri Wilarso Budi
Source :
Journal of Forestry Research. 29:1157-1166
Publication Year :
2017
Publisher :
Springer Science and Business Media LLC, 2017.

Abstract

Plantations of tropical species are becoming an increasingly important source of wood. However, it is important that research trials focus not only on tree growth performance, but also on wood quality. The aims of this study were to assess the growth performance of six commercially and ecologically important tree species from separate plantation trials in Indonesia and to determine the relationships between tree growth and wood quality in terms of the dynamic modulus of elasticity (MOE) and wood density. Forty-eight 7-year Maesopsis eminii Engl. and thirty-five 9-year specimens (7 each of 5 Shorea spp.) were selected from two trials. The MOE, based on acoustic velocity, was indirectly measured to evaluate wood stiffness. Tree-growth performance was evaluated, and correlations between growth traits and acoustic velocity as well as density and wood stiffness properties were estimated. The growth performance of M. eminii in terms of tree volume was significantly different in three different categories of growth (i.e. fast, medium, slow). Of the five Shorea spp. studied, Shorea leprosula Miq. had the highest growth rate, as expected since it is known to be a fast-growing Shorea species. Indirect measurement of wood quality by means of non-destructive ultrasonic methods showed a weak negative correlation between tree volume and acoustic velocity and dynamic MOE. Although each fast-growing tree could reach a merchantable size faster than other varieties or species, wood traits of various species tested were not significantly different based on tree growth rate performance. The findings from this study could be used to improve selection criteria in future breeding trials; indirect measurements of the dynamic modulus of elasticity can be used in mass pre-selection of genetic materials, to choose the most-promising material for in-depth evaluation.

Details

ISSN :
19930607 and 1007662X
Volume :
29
Database :
OpenAIRE
Journal :
Journal of Forestry Research
Accession number :
edsair.doi...........2d394ffe7f99d13ccae252852eebc4cc
Full Text :
https://doi.org/10.1007/s11676-017-0510-8