Back to Search Start Over

Multi-task clustering via domain adaptation

Authors :
Zhihao Zhang
Jie Zhou
Source :
Pattern Recognition. 45:465-473
Publication Year :
2012
Publisher :
Elsevier BV, 2012.

Abstract

Clustering is a fundamental topic in pattern recognition and machine learning research. Traditional clustering methods deal with a single clustering task on a single data set. However, in many real applications, multiple similar clustering tasks are involved simultaneously, e.g., clustering clients of different shopping websites, in which data of different subjects are collected for each task. These tasks are cross-domains but closely related. It is proved that we can improve the individual performance of each clustering task by appropriately utilizing the underling relation. In this paper, we will propose a new approach, which performs multiple related clustering tasks simultaneously through domain adaptation. A shared subspace will be learned through domain adaptation, where the gap of distributions among tasks is reduced, and the shared knowledge will be transferred through all tasks by exploiting the strengthened relation in the learned subspace. Then the object is set as the best clustering in both the original and learned spaces. An alternating optimization method is introduced and its convergence is theoretically guaranteed. Experiments on both synthetic and real data sets demonstrate the effectiveness of the proposed approach.

Details

ISSN :
00313203
Volume :
45
Database :
OpenAIRE
Journal :
Pattern Recognition
Accession number :
edsair.doi...........2c5016cc41513bb11447c10155ca52e1
Full Text :
https://doi.org/10.1016/j.patcog.2011.05.011