Back to Search Start Over

On the singularity of the exponential map on a Lie group

Authors :
Heng Lung Lai
Source :
Proceedings of the American Mathematical Society. 62:334-336
Publication Year :
1977
Publisher :
American Mathematical Society (AMS), 1977.

Abstract

Let G \mathfrak {G} be a connected (real or complex) Lie group with Lie algebra G. Define a conjugate point g of G \mathfrak {G} as a point g = exp ⁡ x g = \exp x for some x ∈ G x \in G and d exp x d{\exp _x} is a noninvertible linear map. We prove that g ∈ G g \in \mathfrak {G} is a conjugate point if and only if g = exp ⁡ x λ g = \exp {x_\lambda } for at least a (complex parameter) family of elements x λ ( λ ∈ C ) {x_\lambda }(\lambda \in {\mathbf {C}}) in G.

Details

ISSN :
10886826 and 00029939
Volume :
62
Database :
OpenAIRE
Journal :
Proceedings of the American Mathematical Society
Accession number :
edsair.doi...........2c313ee8b21816f31a1e96ab0da7da40
Full Text :
https://doi.org/10.1090/s0002-9939-1977-0432823-4