Back to Search
Start Over
On the singularity of the exponential map on a Lie group
- Source :
- Proceedings of the American Mathematical Society. 62:334-336
- Publication Year :
- 1977
- Publisher :
- American Mathematical Society (AMS), 1977.
-
Abstract
- Let G \mathfrak {G} be a connected (real or complex) Lie group with Lie algebra G. Define a conjugate point g of G \mathfrak {G} as a point g = exp x g = \exp x for some x ∈ G x \in G and d exp x d{\exp _x} is a noninvertible linear map. We prove that g ∈ G g \in \mathfrak {G} is a conjugate point if and only if g = exp x λ g = \exp {x_\lambda } for at least a (complex parameter) family of elements x λ ( λ ∈ C ) {x_\lambda }(\lambda \in {\mathbf {C}}) in G.
Details
- ISSN :
- 10886826 and 00029939
- Volume :
- 62
- Database :
- OpenAIRE
- Journal :
- Proceedings of the American Mathematical Society
- Accession number :
- edsair.doi...........2c313ee8b21816f31a1e96ab0da7da40
- Full Text :
- https://doi.org/10.1090/s0002-9939-1977-0432823-4