Back to Search
Start Over
The prescribed scalar curvature problem for polyharmonic operator
- Source :
- Annali di Matematica Pura ed Applicata (1923 -). 200:953-982
- Publication Year :
- 2020
- Publisher :
- Springer Science and Business Media LLC, 2020.
-
Abstract
- We consider the following prescribed curvature problem involving polyharmonic operator: $$\begin{aligned} D_mu=Q(|y'|,y'')u^{m^*-1}, \;u>0, \; u \in {\mathcal {H}}^{m}({\mathbb {S}}^{N}), \end{aligned}$$ where $$m^*=\frac{2N}{N-2m},\; N\ge 4m+1$$ , $$m \in {\mathbb {N}}_+$$ , $$(y',y'') \in {\mathbb {R}}^{2} \times {\mathbb {R}}^{N-2}$$ , and $$Q(|y'|,y'')$$ is a bounded nonnegative function in $${\mathbb {R}}^{+} \times {\mathbb {R}}^{N-2}$$ . $${\mathbb {S}}^N$$ is the unit sphere with induced Riemannian metric g, $$D_m$$ is the polyharmonic operator given by $$D_m=\prod _{k=1}^m(-\Delta _g+\frac{1}{4}(N-2k)(N+2k-2)),$$ where $$\Delta _g$$ is the Laplace–Beltrami operator on $${\mathbb {S}}^N$$ . By using a finite reduction argument and local Pohozaev-type identities for polyharmonic operator, we prove that if $$N \ge 4m+1$$ and $$Q(r,y'')$$ has a stable critical point $$(r_0,y_0'')$$ , then the above problem has infinitely many solutions, whose energy can be arbitrarily large.
- Subjects :
- Physics
Unit sphere
Reduction (recursion theory)
Applied Mathematics
Prescribed scalar curvature problem
Operator (physics)
010102 general mathematics
Nonnegative function
01 natural sciences
Combinatorics
Critical point (thermodynamics)
Bounded function
0103 physical sciences
010307 mathematical physics
0101 mathematics
Energy (signal processing)
Subjects
Details
- ISSN :
- 16181891 and 03733114
- Volume :
- 200
- Database :
- OpenAIRE
- Journal :
- Annali di Matematica Pura ed Applicata (1923 -)
- Accession number :
- edsair.doi...........2c2706e98519b4f7290d0ff49b574d03
- Full Text :
- https://doi.org/10.1007/s10231-020-01021-1