Back to Search Start Over

Inhomogeneous time-reversal symmetry breaking in Sr2RuO4

Authors :
Roland Willa
Jörg Schmalian
Matthias Hecker
Rafael M. Fernandes
Source :
Physical Review B. 104
Publication Year :
2021
Publisher :
American Physical Society (APS), 2021.

Abstract

We show that the observed time-reversal symmetry breaking (TRSB) of the superconducting state in Sr2RuO4 can be understood as originating from inhomogeneous strain fields near edge dislocations of the crystal. Specifically, we argue that, without strain inhomogeneities, Sr2RuO4 is a single-component, time-reversal symmetric superconductor, likely with dx2−y2 symmetry. However, due to the strong strain inhomogeneities generated by dislocations, a slowly decaying subleading pairing state contributes to the condensate in significant portions of the sample. As it phase winds around the dislocation, time-reversal symmetry is locally broken. Global phase locking and TRSB occur at a sharp Ising transition that is not accompanied by a change of the single-particle gap and yields a very small heat capacity anomaly. Our model thus explains the puzzling absence of a measurable heat capacity anomaly at the TRSB transition in strained samples and the dilute nature of the time-reversal symmetry broken state probed by muon spin rotation experiments. We propose that plastic deformations of the material may be used to manipulate the onset of broken time-reversal symmetry.

Details

ISSN :
24699969 and 24699950
Volume :
104
Database :
OpenAIRE
Journal :
Physical Review B
Accession number :
edsair.doi...........2b77e97c9a95e200c965f452842f3410
Full Text :
https://doi.org/10.1103/physrevb.104.024511