Back to Search
Start Over
Layer potentials and boundary value problems for Laplacian in Lipschitz domains with data in quasi-Banach Besov spaces
- Source :
- Annali di Matematica Pura ed Applicata. 185:155-187
- Publication Year :
- 2005
- Publisher :
- Springer Science and Business Media LLC, 2005.
-
Abstract
- We study the Dirichlet and Neumann boundary value problems for the Laplacian in a Lipschitz domain \({\Omega}\), with boundary data in the Besov space \({B_{s}^{p,p} (\partial\Omega).}\) The novelty is to identify a way of measuring smoothness for the solution u that allows us to consider the case p 1 was treated.
- Subjects :
- Pure mathematics
Smoothness (probability theory)
Applied Mathematics
Mathematical analysis
Mathematics::Analysis of PDEs
Mathematics::Spectral Theory
Lipschitz continuity
Omega
Dirichlet distribution
symbols.namesake
Lipschitz domain
symbols
Besov space
Boundary value problem
Laplace operator
Mathematics
Subjects
Details
- ISSN :
- 16181891 and 03733114
- Volume :
- 185
- Database :
- OpenAIRE
- Journal :
- Annali di Matematica Pura ed Applicata
- Accession number :
- edsair.doi...........2b727e3d9d3d342f78ba765214c25bd8
- Full Text :
- https://doi.org/10.1007/s10231-004-0125-5