Back to Search Start Over

Activity Sequence-Based Indoor Pedestrian Localization Using Smartphones

Authors :
Wei Tu
Qingzhou Mao
Baoding Zhou
Xing Zhang
Qingquan Li
Source :
IEEE Transactions on Human-Machine Systems. 45:562-574
Publication Year :
2015
Publisher :
Institute of Electrical and Electronics Engineers (IEEE), 2015.

Abstract

This paper presents an activity sequence-based indoor pedestrian localization approach using smartphones. The activity sequence consists of several continuous activities during the walking process, such as turning at a corner, taking the elevator, taking the escalator, and walking stairs. These activities take place when a user walks at some special points in the building, like corners, elevators, escalators, and stairs. The special points form an indoor road network. In our approach, we first detect the user's activities using the built-in sensors in a smartphone. The detected activities constitute the activity sequence. Meanwhile, the user's trajectory is reckoned by Pedestrian Dead Reckoning (PDR). Based on the detected activity sequence and reckoned trajectory, we realize pedestrian localization by matching them to the indoor road network using a Hidden Markov Model. After encountering several special points, the location of the user would converge on the true one. We evaluate our proposed approach using smartphones in two buildings: an office building and a shopping mall. The results show that the proposed approach can realize autonomous pedestrian localization even without knowing the initial point in the environments. The mean offline localization error is about 1.3 m. The results also demonstrate that the proposed approach is robust to activity detection error and PDR estimation error.

Details

ISSN :
21682305 and 21682291
Volume :
45
Database :
OpenAIRE
Journal :
IEEE Transactions on Human-Machine Systems
Accession number :
edsair.doi...........2b581bbe4a9907a9c477f2e6f177e1b9