Back to Search Start Over

A coprimality condition on consecutive values of polynomials

Authors :
Márton Szikszai
Carlo Sanna
Source :
Bulletin of the London Mathematical Society. 49:908-915
Publication Year :
2017
Publisher :
Wiley, 2017.

Abstract

Let $f\in\mathbb{Z}[X]$ be quadratic or cubic polynomial. We prove that there exists an integer $G_f\geq 2$ such that for every integer $k\geq G_f$ one can find infinitely many integers $n\geq 0$ with the property that none of $f(n+1),f(n+2),\dots,f(n+k)$ is coprime to all the others. This extends previous results on linear polynomials and, in particular, on consecutive integers.

Details

ISSN :
00246093
Volume :
49
Database :
OpenAIRE
Journal :
Bulletin of the London Mathematical Society
Accession number :
edsair.doi...........2a3da3592b7a3dd82239617b1ef4aa6d