Back to Search
Start Over
Mechanical properties and deformation mechanisms in CoCrFeMnNi high entropy alloys: A molecular dynamics study
- Source :
- Materials Chemistry and Physics. 271:124912
- Publication Year :
- 2021
- Publisher :
- Elsevier BV, 2021.
-
Abstract
- We used molecular dynamics simulations to investigate the relationship between mechanical properties and deformation mechanisms in CoCrFeMnNi alloys having different compositions. According to deformation twinning activity, the deformation mechanisms in the different CoCrFeMnNi compositions under tensile loading can be classified into three major categories: easy-shear (ES), inter-locks (IL) and bulk hexagonal closed packed (hcp) transformation (BH). We found that the compositions with ES were more likely to rupture early because of the short and fragmented twins. The compositions following the IL pattern promoted the movement of interlocking stacking faults in the twin boundaries that could prolong tensile deformation. Moreover, BH could further increase ductility because the hcp transformation could absorb and dissipate the stacking faults. Experimental observations of immobile stacking-fault networks that impede dislocation motion and further provide preferred sites for the formation of the hcp phase were commonly found in the ES, IL and BH patterns. The calculated intrinsic stacking fault energies of CoCrFeMnNi and CoCrFeNi were consistent with the experimental measurements. The combination of high unstable stacking fault energy with the formation of the IL pattern results in high strength and high ductility in the CoCrFeMnNi HEA system.
- Subjects :
- Materials science
High entropy alloys
Stacking
02 engineering and technology
Deformation (meteorology)
010402 general chemistry
021001 nanoscience & nanotechnology
Condensed Matter Physics
01 natural sciences
0104 chemical sciences
Deformation mechanism
Stacking-fault energy
General Materials Science
Composite material
0210 nano-technology
Ductility
Crystal twinning
Stacking fault
Subjects
Details
- ISSN :
- 02540584
- Volume :
- 271
- Database :
- OpenAIRE
- Journal :
- Materials Chemistry and Physics
- Accession number :
- edsair.doi...........29b74f7d07d157dede1f0319b5882024