Back to Search
Start Over
Adaptive combination of interventions required to reach population immunity due to stochastic community dynamics and limited vaccination
- Publication Year :
- 2021
- Publisher :
- Research Square Platform LLC, 2021.
-
Abstract
- Reaching population immunity against COVID-19 is proving difficult even in countries with high vaccination levels. We demonstrate that this in part is due to heterogeneity and stochasticity resulting from community-specific human-human interaction and infection networks. We address this challenge by community-specific simulation of adaptive strategies. Analyzing the predicted effect of vaccination into an ongoing COVID-19 outbreak, we find that adaptive combinations of targeted vaccination and non-pharmaceutical interventions (NPIs) are required to reach population immunity. Importantly, the threshold for population immunity is not a unique number but strategy and community dependent. Furthermore, the dynamics of COVID-19 outbreaks is highly community-specific: in some communities vaccinating highly interactive people diminishes the risk for an infection wave, while vaccinating the elderly reduces fatalities when vaccinations are low due to supply or hesitancy. Similarly, while risk groups should be vaccinated first to minimize fatalities, optimality branching is observed with increasing population immunity. Bimodality emerges as the infection network gains complexity over time, which entails that NPIs generally need to be longer and stricter. Thus, we analyze and quantify the requirement for NPIs dependent on the chosen vaccination strategy. Our simulation platform can process and analyze dynamic COVID-19 epidemiological situations in diverse communities world-wide to predict pathways to population immunity even with limited vaccination.
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi...........295b8e967f2aa8c12b7d11d892ff842c
- Full Text :
- https://doi.org/10.21203/rs.3.rs-716282/v1