Back to Search Start Over

Quantum molecular motion in the mixed ion-radical complex, [(H2O)(H2S)]+

Authors :
Ryan P. Steele
Jonathan D. Herr
Justin J. Talbot
S. D. Floris
M. J. Wilkinson
Source :
Physical Chemistry Chemical Physics. 18:27450-27459
Publication Year :
2016
Publisher :
Royal Society of Chemistry (RSC), 2016.

Abstract

The cation dimer of water and hydrogen sulfide, [(H2O)(H2S)]+, serves as a fundamental model for the oxidation chemistry of H2S. The known oxidative metabolism of H2S by biological species in sulfur-rich environments has motivated the study of the inherent properties of this benchmark complex, with possible mechanistic implications for modern water oxidation chemistry. The low-energy isomer of this open-shell ion is a proton-transferred (PT) structure, H3O+⋯SH˙. An alternative PT structure, H3S+⋯OH˙, and a hemibonded (HB) isomer, [H2O·SH2]+, are also stable isomers, placing this complex intermediate to known (H2O)2+ (PT) and (H2S)2+ (HB) limiting regimes. This intermediate character suggested the possibility of unique molecular motion, even in the vibrational ground state. Path integral molecular dynamics and anharmonic vibrational spectroscopy simulations have been performed in this study, in order to understand the inherent quantum molecular motion of this complex. The resulting structural distributions were found to deviate significantly from both classical and harmonic analyses, including the observation of large-amplitude anharmonic motion of the central proton and nearly free rotation of the terminal hydrogens. The predicted vibrational spectra are particularly unique and suggest characteristic signatures of the strong electronic interactions and anharmonic vibrational mode couplings in this radical cation.

Details

ISSN :
14639084 and 14639076
Volume :
18
Database :
OpenAIRE
Journal :
Physical Chemistry Chemical Physics
Accession number :
edsair.doi...........291b31be1d0da19e2b60a0d43fdcad70
Full Text :
https://doi.org/10.1039/c6cp05299a